
Single consolidated NGS workflow with DNA + RNA

QIAseq[®] Pan Cancer Multimodal cuts user interventions by 50%

Challenges of pan cancer profiling

Pan cancer studies focus on profiling of relevant DNA and RNA alterations found across multiple cancers, as well as assessment of tumor mutational burden (TMB) and microsatellite instability (MSI) for solid tumors and heme malignancies. Recent advances in NGS chemistries, platforms and bioinformatics pipelines have empowered users to efficiently interrogate DNA and RNA alterations in biological samples. Current approaches, however, require the use of 2 separate workflows to prepare libraries from separate DNA and RNA isolates. Limitations of such approaches include:

- Precious samples must be split to extract DNA and RNA in separate sample prep protocols
- Large amounts of sample material are required to generate sufficient amounts of input DNA and RNA for multiple workflows
- Workflow has added complexity of deriving integrated insights from results of different technical approaches, each with its own innate bias
- Separate workflows result in inefficient use of resources and long turnaround times

Streamlined, consolidated one-day workflow

To overcome the limitations associated with current approaches, the QIAseq Pan Cancer Multimodal panel starts with total nucleic acids (or DNA + RNA) and prepares targeted DNA and RNA libraries containing Unique Molecular indices (UMIs) for Illumina[®] platforms using a one-day, consolidated workflow (see Figure 1).

The QIAseq Pan Cancer Multimodal panel delivers:

- The ONLY single consolidated workflow for DNA + RNA library prep using total nucleic acids as input
- Operational efficiency with a 50% reduction in user interventions
- Confident detection of low-frequency variants with UMIs
- Reduced index hopping with Unique Dual Indices (UDIs)
- Comprehensive coverage of known and novel fusions as well as all relevant alterations
- 523 DNA gene targets, 56 RNA fusion gene targets and 26 microsatellite instability MSI loci (Tables 1–3)

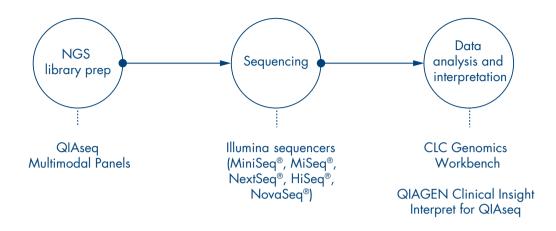


Figure 1. Extract more information, while reducing sample, time and cost with a simple, one-day workflow. This flexible solution enables the construction of libraries compatible with Illumina platforms from as little as 10 ng total nucleic acid isolated from a wide range of samples. The data analysis pipelines in CLC Genomics Workbench translate raw sequence data in FASTQ format to DNA and RNA variant files (VCFs), which can be further interpreted for biological significance through QCI® Interpret for QIAseq.

Confidently interpret NGS variants

Our software workflow makes it easy to extract, identify the variants of interest and deliver a comprehensive variant interpretation from your raw NGS data. The industry leading genomic analysis and interpretation software solutions, CLC Genomic Workbench and QCI Interpret for QIAseq, provide you with a comprehensive report to support your workflow, including variant classification, details on variant function, literature references, drug labels, drug interactions and relevant clinical trials. Accelerate your clinical research and go from raw NGS data to detailed and trusted insights in minutes – not hours.

Key differentiators

- The ONLY single consolidated workflow for DNA + RNA library prep using total nucleic acids as input
- Cuts user interventions by 50%
- Confident detection of low-frequency variants
- Detection of both known and novel fusions
- Increased target coverage of all relevant alterations

Table 1. 523 DNA gene targets (Part 1)

ABL1	ASXL1	BCOR	CCND2	CENPA	DAXX	EP300	ETV5	FGF19	FOXA1	GPR124	HIST1H3I
ABL2	ASXL2	BCORLI	CCND3	CHD2	DCUNIDI	EPCAM	ETV6	FGF2	FOXL2	GPS2	HIST1H3J
ACVR1	ATM	BCR	CCNEI	CHD4	DDR2	EPHA3	EWSR1	FGF23	FOXO1	GREM1	HIST2H3A
ACVR1B	ATR	BIRC3	CD274	CHEK1	DDX41	EPHA5	EZH2	FGF3	FOXP1	GRIN2A	HIST2H3C
ΑΚΤΙ	ATRX	BLM	CD276	CHEK2	DHX15	EPHA7	FAM175A	FGF4	FRS2	GRM3	HIST2H3D
AKT2	AURKA	BMPR1A	CD74	CIC	DICER1	EPHB1	FAM46C	FGF5	FUBP1	GSK3B	HIST3H3
AKT3	AURKB	BRAF	CD79A	CREBBP	DIS3	ERBB2	FANCA	FGF6	FYN	H3F3A	HLA-A
ALK	AXIN1	BRCA1	CD79B	CRKL	DNAJB1	ERBB3	FANCC	FGF7	GABRA6	H3F3B	HLA-B
ALOX12B	AXIN2	BRCA2	CDC73	CRLF2	DNMTI	ERBB4	FANCD2	FGF8	GATA1	H3F3C	HLA-C
AMER1	AXL	BRD4	CDH1	CSF1R	DNMT3A	ERCC1	FANCE	FGF9	GATA2	HGF	HNF1A
ANKRDII	B2M	BRIP1	CDK12	CSF3R	DNMT3B	ERCC2	FANCF	FGFR1	GATA3	HIST1H1C	HNRNPK
ANKRD26	BAP1	BTG1	CDK4	CSNK1A1	DOTIL	ERCC3	FANCG	FGFR2	GATA4	HIST1H2BD	HOXB13
APC	BARD1	BTK	CDK6	CTCF	E2F3	ERCC4	FANCI	FGFR3	GATA6	HIST1H3A	HRAS
AR	BBC3	C11orf30	CDK8	CTLA4	EED	ERCC5	FANCL	FGFR4	GEN1	HIST1H3B	HSD3B1
ARAF	BCL10	CALR	CDKNIA	CTNNAI	EGFL7	ERG	FAS	FH	GID4	HIST1H3C	HSP90AA1
ARFRP1	BCL2	CARD11	CDKN1B	CTNNB1	EGFR	ERRFI1	FAT1	FLCN	GLI1	HIST1H3D	ICOSLG
ARID1A	BCL2L1	CASP8	CDKN2A	CUL3	EIF1AX	ESR1	FBXW7	FLI1	GNA11	HIST1H3E	ID3
ARID1B	BCL2L11	CBFB	CDKN2B	CUXI	EIF4A2	ETS1	FGF1	FLT1	GNA13	HIST1H3F	IDH1
ARID2	BCL2L2	CBL	CDKN2C	CXCR4	EIF4E	ETV1	FGF10	FLT3	GNAQ	HIST1H3G	IDH2
ARID5B	BCL6	CCNDI	CEBPA	CYLD	EML4	ETV4	FGF14	FLT4	GNAS	HIST1H3H	IFNGRI
IGF1	KAT6A	LRP1B	MEF2B	MYD88	NSD1	PDGFRB	PMS1	PTPRS	REL	SDHD	SOX10
IGF1R	KDM5A	LYN	MENI	MYOD1	NTRKI	PDK1	PMS2	PTPRT	RET	SETBP1	SOX17

Table 2. 56 RNA fusion gene targets

Genes to	Genes targeted for fusion, exon skipping, and alternatively spliced variant detection by RNA sequencing										
ABL1	BCL2	CSF1R	ESR1	EWSR1	FLI1	KIF5B	MSH2	NRG1	PAX3	<i>РІКЗСА</i>	ROS1
AKT3	BRAF	EGFR	ETS1	FGFR1	FLT1	KIT	МҮС	NTRK1	PAX7	PPARG	RPS6KB1
ALK	BRCAI	EML4	ETV1	FGFR2	FLT3	KMT2A	NOTCHI	NTRK2	PDGFRA	RAF1	TMPRSS2
AR	BRCA2	ERBB2	ETV4	FGFR3	JAK2	MET	NOTCH2	NTRK3	PDGFRB	RET	TP53
AXL	CDK4	ERG	ETV5	FGFR4	KDR	MLLT3	NOTCH3				

Table 1. 523 DNA gene targets (Part 2)

IGF2	KDM5C	LZTR1	MET	NAB2	NTRK2	PDPK1	PNRC1	QKI	RFWD2	SETD2	SOX2
IKBKE	KDM6A	MAGI2	MGA	NBN	NTRK3	PGR	POLD1	RAB35	RHEB	SF3B1	SOX9
IKZF1	KDR	MALTI	MITF	NCOA3	NUP93	PHF6	POLE	RAC1	RHOA	SH2B3	SPEN
IL10	KEAP1	MAP2K1	MLH1	NCORI	NUTM1	PHOX2B	PPARG	RAD21	RICTOR	SH2D1A	SPOP
IL7R	KEL	MAP2K2	MLIT3	NEGR1	ΡΑΚΊ	РІКЗС2В	PPM1D	RAD50	RITI	SHQ1	SPTA1
INHA	KIF5B	MAP2K4	MPL	NF1	РАКЗ	PIK3C2G	PPP2R1A	RAD51	RNF43	SLIT2	SRC
INHBA	KIT	MAP3K1	MRE11A	NF2	PAK7	РІКЗСЗ	PPP2R2A	RAD51B	ROSI	SLX4	SRSF2
INPP4A	KLF4	MAP3K13	MSH2	NFE2L2	PALB2	<i>РІКЗСА</i>	PPP6C	RAD51C	RPS6KA4	SMAD2	STAG1
INPP4B	KLHL6	MAP3K14	MSH3	NFKBIA	PARK2	<i>РІКЗСВ</i>	PRDM1	RAD51D	RPS6KB1	SMAD3	STAG2
INSR	KMT2A	MAP3K4	MSH6	NKX2-1	PARP1	PIK3CD	PREX2	RAD52	RPS6KB2	SMAD4	STAT3
IRF2	KMT2B	MAPK1	MST1	NKX3-1	PAX3	PIK3CG	PRKARIA	RAD54L	RPTOR	SMARCA4	STAT4
IRF4	KMT2C	МАРКЗ	MSTIR	NOTCHI	PAX5	PIK3R1	PRKCI	RAF1	RUNXI	SMARCB1	STAT5A
IRS1	KMT2D	MAX	MTOR	NOTCH2	PAX7	PIK3R2	PRKDC	RANBP2	RUNXITI	SMARCD1	STAT5B
IRS2	KRAS	MCL1	MUTYH	NOTCH3	PAX8	PIK3R3	PRSS8	RARA	RYBP	SMC1A	STK11
JAK1	LAMP1	MDC1	МҮВ	NOTCH4	PBRM1	PIM1	PTCH1	RASA1	SDHA	SMC3	STK40
JAK2	LATS1	MDM2	МҮС	NPM1	PDCD1	PLCG2	PTEN	RB1	SDHAF2	SMO	SUFU
JAK3	LATS2	MDM4	MYCL	NRAS	PDCD1LG2	PLK2	PTPN11	RBM10	SDHB	SNCAIP	SUZ12
JUN	LMO1	MED12	MYCN	NRG1	PDGFRA	PMAIP1	PTPRD	RECQL4	SDHC	SOCS1	SYK
TAF1	TCF7L2	TET2	TGFBR2	TNFRSF14	TP63	TSC2	VHL	WTI	XRCC2	ZBTB2	ZNF217
ТВХЗ	TERC	TFE3	TMEM127	TOPI	TRAF2	TSHR	VTCN1	XIAP	YAP1	ZBTB7A	ZNF703
TCEB1	TERT	TFRC	TMPRSS2	TOP2A	TRAF7	U2AF1	WISP3	XPO1	YES1	ZFHX3	ZRSR2
TCF3	TET1	TGFBR1	TNFAIP3	TP53	TSC1	VEGFA					

Table 3. 26 MSI loci

Genes targeted for microsatellite length detection by DNA sequencing											
BAT25	BAT40	D17S250	D17\$787	D18S61	D18S69	D2S123	D5S107	D7S519	NR21	NR24	D18S35
BAT26	D10S196	D17S588	D18S55	D18S64	D20S100	D3S1029	D5S346	D8S87	NR22	MONO-27	HSP110-T17
BAT34C4	D13S175										

Ordering Information

Product	Contents	Number of samples	Panel variant number	Cat. no.
QIAseq Multimodal HC	Kit containing ALL reagents (except indexes)	12	UHS-5000Z-12	333942
Panel; Pan Cancer Panel	for multimodal (DNA and RNA) sequencing	96	UHS-5000Z-96	333945
QIAseq Multimodal Index I Set A SW (96)	Box containing adapters, enough to process a total of 96 samples, for Multimodal panel sequencing on Illumina platforms using separate enrichment workflows; one of two sets required for multiplexing 96 samples	96	N/A	333985
QIAseq Multimodal Index I Set B SW (96)	Box containing adapters, enough to process a total of 96 samples, for Multimodal panel sequencing on Illumina platforms using separate enrichment workflows; two of two sets required for multiplexing 96 samples	96	N/A	333995

 \bigcirc

Visit **go.qiagen.com/QIAseqmultimodal** and discover how youcan double your NGS insights and free up half of your resources.

The QIAseq Pan Cancer Multimodal Panel is intended for molecular biology applications. This product is not intended for the diagnosis, prevention, or treatment of a disease.

For up-to-date licensing information and product-specific disclaimers, see the respective QIAGEN kit handbook or user manual. QIAGEN kit handbooks and user manuals are available at www.qiagen.com or can be requested from QIAGEN Technical Services or your local distributor.

Trademarks: QIAGEN®, Sample to Insight®, QIAseq®, QCI® (QIAGEN Group); HiSeq®, Illumina® MiniSeq®, MiSeq®, NextSeq®, NovaSeqv (Illumina, Inc.). Registered names, trademarks, etc. used in this document, even when not specifically marked as such, are not to be considered unprotected by law.

Ordering www.qiagen.com/shop | Technical Support support.qiagen.com | Website www.qiagen.com